Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:
математика
двухуровневая система
общая лексика
(плотницкий) уровень
строительное дело
строительный уровень, ватерпас
Electronic system level (ESL) design and verification is an electronic design methodology, focused on higher abstraction level concerns. The term Electronic System Level or ESL Design was first defined by Gartner Dataquest, an EDA-industry-analysis firm, on February 1, 2001. It is defined in ESL Design and Verification as: "the utilization of appropriate abstractions in order to increase comprehension about a system, and to enhance the probability of a successful implementation of functionality in a cost-effective manner."
The basic premise is to model the behavior of the entire system using a high-level language such as C, C++, or using graphical "model-based" design tools. Newer languages are emerging that enable the creation of a model at a higher level of abstraction including general purpose system design languages like SysML as well as those that are specific to embedded system design like SMDL and SSDL. Rapid and correct-by-construction implementation of the system can be automated using EDA tools such as high-level synthesis and embedded software tools, although much of it is performed manually today. ESL can also be accomplished through the use of SystemC as an abstract modeling language.
ESL is an established approach at many of the world’s leading System-on-a-chip (SoC) design companies, and is being used increasingly in system design. From its genesis as an algorithm modeling methodology with 'no links to implementation', ESL is evolving into a set of complementary methodologies that enable embedded system design, verification, and debugging through to the hardware and software implementation of custom SoC, system-on-FPGA, system-on board, and entire multi-board systems.
Design and verification are two distinct disciplines within this methodology. Some practices are to keep the two elements separate, while others advocate for closer integration between design and verification.